Categories
geology

So you wanted to know about my research?

Now you can read the whole enchilada for free! It’s a steamy but heart-wrenching story about a river and the course of its life as the world heats up and the mammals become ever tinier and more cute. Sandstones! Siltstones! Mudstones! Who will be swept away next? Will I need dental work from all those rocks I ate in Bremen? Will I overcome the cat vomit yellow sandstone or will it succeed in ruining my life? The answers can be found inside:

Sedimentary and climatic response to the Second Eocene Thermal Maximum in the McCullough Peaks Area, Bighorn Basin, Wyoming, U.S.A.
by Acks, Rachael, M.S., UNIVERSITY OF COLORADO AT BOULDER, 2013, 81 pages
Abstract:

The Paleocene-Eocene Thermal Maximum (PETM) was followed by a lesser hyperthermal event, called ETM2, at ∼53.7 Ma (Zachos et al., 2010). The carbon isotope excursion and global temperature increases for ETM2 were approximately half those of the PETM (Stap et al., 2010). The paleohydrologic response to this event in the continental interior of western North America is less well understood than the response to PETM warming. Although ETM2 is better known from marine than continental strata, the hyperthermal has been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill sections of the McCullough Peaks area in the Bighorn Basin, Wyoming (Abels et al., 2012). The presence of ETM2 in Willwood Formation strata provides a rare opportunity to examine local continental climactic and sedimentary response to this hyperthermal.

Core drilled at Gilmore Hill was described and analyzed geochemically. The core consists of paleosols formed on mudrocks that are interbedded with siltstones and sandstones. Carbon isotope analysis of carbonate nodules from paleosols in the core shows that the top of the core, below a prominent yellow sandstone, most likely records the very beginning of the carbon isotope excursion that marks ETM2 (Maibauer and Bowen, unpublished data).The rest of the CIE was likely either not recorded due to sandstone deposition or removed by erosion prior to the deposition of the sandstone.

Analysis of bulk oxides in the paleosols using the methods of Sheldon et al. (2002) and Nordt and Driese (2010b) provides quantitative estimates of precipitation through the core section. The estimates reveal drying over the ∼15m leading up to ETM2. Red and brown paleosols, attributed to generally dry conditions, dominate the entire section below the onset of ETM2 and confirm drier conditions. In contrast, thick purple paleosols are associated with ETM2 at the Deer Creek site and suggest wetter conditions during most of the ETM2 interval. The prominent yellow sandstone at the top of the Gilmore Hill core was probably deposited during those wetter climate conditions.

The core displays distinct changes in stratigraphic architecture: the bottom ∼100m is mudrock-dominated and the top ∼100m is sandstone dominated. Several PETM studies have suggested that sediment coarsening in continental basins in the US and Spain developed in response to precipitation changes associated with global warming. Analysis of the Gilmore Hill core’s stratigraphic architecture in conjunction with carbon isotope and precipitation data shows that the prominent sandstone in the position of ETM2 was not caused by climate change. The sandstone is the uppermost part of the sandstone-rich interval whose base underlies ETM2 by more than 50m. This study shows that the shift from mudrock- to sandstone-dominated stratigraphy at Gilmore Hill, and possibly throughout the McCullough Peaks area, was not caused by climactic change associated with ETM2. While studies of PETM sections have suggested that the hyperthermal caused sediment coarsening in several different basins including the Bighorn Basin (e.g., Schmitz and Pujalte, 2007; Smith et al., 2008b; Foreman et al., 2012), this study suggests that the lesser magnitude ETM2 did not cross the necessary threshold to provoke a sedimentological response in the Bighorn Basin.