Categories
igneous stuff

Dwelling in the Ashes

Very, very cool pictures of Kandovan village in Iran, where the dwellings are carved in to a tuff, which is basically rock made of compressed volcanic ash and other debris.

This of course made me immediately think of the cliff dwellings at Bandelier National Monument, which are carved in to the Bandelier Tuff. Kandovan wins the coolness contest, though, since people are still living in those dwellings.

The site about Kandovan says:

As we have noted previously, in the area of Kandovan, Sahand’s volcanic ash and debris was compressed and shaped by natural forces into cone-shaped pillars containing pockets that became caves.

Off the top of my head, I don’t know if I buy that there would be some factor in the formation of the tuff at Kandovan a bunch of cone-shaped pillars. It’s probably just more of a function of tuff in general that you get those very organic, steeply-sloped shapes when it weathers.

As rocks go, tuff is pretty soft and shockingly light, which is why it’s an ideal rock for people to try to carve dwellings in to. It’s strong and stable enough that undermining it isn’t going to make it collapse, but it’s also much easier to work with than a much harder rock, like granite.

There’s a few pictures I took of the Bandelier dwellings, toward the end of the album from my second New Mexico trip.

Categories
backyard geology igneous stuff pet rock

A girl and her pet rock (4)

So I just realized that I owe a post for today. I spent my entire day working on my geology term paper, so I have nothing all that clever or interesting to say. So I guess instead of falling down on the job completely, I shall share the rough draft of my paper. Yay?

Unfortunately I can’t really include the pictures, so you will miss the treat of my extremely awful, juvenile-looking hand-drawn cross section. It’s one step up from MS Paint, but a small step at that.

I’ve also now submitted my two grad school applications. Keep your fingers crossed for me!

Also as a note, the pictures of what I’m referring to in the petrochemistry section can be found right here.

Genesis of the Green Mountain Kimberlite

Introduction
The Green Mountain Kimberlite is located in a mountain park/open space near the city of Boulder, Colorado, at approximately latitude and longitude 39º59.431’N, 105º18.09’W.

The Green Mountain Kimberlite intrudes in to the Boulder Creek Batholith, which is primarily composed of Precambrian granodiorite. There are no rocks other than the granodiorite and kimberlite exposed in the immediate area, and no evidence of other intrusions at the surface.

The exposed kimberlite contains no identifiable rock fragments that are younger than Precambrian in age. Larson and Amini (1981) attempted to track the age of the kimberlite using fission track ages on apatite and sphene within the rock. The apatite fission tracks yielded the highly suspect age of 77.1 ±5 million years, while the sphene fission tracks yielded a more reliable age of 367 ±15 million year. This number agreed with other kimberlite emplacements near the Colorado-Wyoming border and was considered reasonable at the time, under the assumption that all kimberlites in the region were emplaced at approximately the same time during the Devonian. However, a later study used 40Ar/39Ar of phlogopite from the kimberlite to determine a maximum emplacement age of ~865 million years, though that age was considered suspect within the study due to problems with Ar degassing and anomalously low initial 40Ar/39Ar ratios. Using 147Sm/144Nd ratios taken from megacryst samples from the kimberlite, the same study found an age of 572 ±49 million years for emplacement (Lester et al, 2001). This dating of the Green Mountain Kimberlite agrees with that of the Chicken Park Dike in the same study; the two kimberlite intrusions are compositionally similar to each other, while being significantly dissimilar to other kimberlites in the area, making the difference in age seem both reasonable and logical. At this time, the evidence points to the Green Mountain Kimberlite being emplaced in the Paleozoic, at 572 ±49 million years ago.

Lester et al (2001) have suggested that their dating of the Green Mountain Kimberlite as Neopaleozoic in age puts the emplacement in line with the break up on the Rodinia supercontinent and suggests a tentative link between the two events. If this is the case, the Kimberlite resulted from an extensional tectonic setting, in which the kimberlitic magma flowed up through deep fissures and zones of crustal weakness related to the extension. The formation of the kimberlite came from the melting of mantle peridotite mixed with volatiles, most importantly CO2, though the source of these volatiles is not immediately apparent in the scenario of the Rodinia breakup. Another possible scenario for the generation of the kimberlitic magma is hot spot activity, though the evidence for such activity in North America is so thin as to be nonexistent (McCandless 1999).

Petrochemistry
The Green Mountain Kimberlite is a porphyritic, with a fine-grained ground mass surrounding large phenocrysts. The phenocrysts in the thin section examined were serpentanized olivine sometimes with apparent remnant olivine, phlogopite, biotite, and large calcite crystals. There was also a 1-2mm in diameter opaque of unknown type in the sample, and infrequent but identifiable orthopyroxene. The ground mass is fine grained and rich in calcite, as well as opaques. Boctor and Meyer (1979) identify the major mineral components of the kimberlite as diopside, ilmenite, Cr-rich and Cr-poor almandine, olivine (serpentanized and not), orthopyroxene, biotite, phlogopite, and calcite. No large garnets were identified in the thin section, but it is very possible that some small garnets exist in the ground mass, which remains mostly dark at all angles under crossed polars. Ilmenite is an opaque mineral and as such cannot be identified with true certainty in the thin section, but considering its abundance within the kimberlite, it is likely that a significant percentage of the opaques in the ground mass are ilmenite. The ground mass is also rich in calcite.

Boctor and Meyer also note the presence of Perovskite within the Green Mountain Kimberlite, though it is a mineral not easily identified within the thin section. However, the presence of the perovskite does suggest that the mantle peridotite source of the kimberlite interacted with CO2-rich fluid, which allowed the chemical interactions to create the abundance of Nb and REE in that mineral.

Conclusions
The formation mechanism for kimberlite magmas in particular is still a topic of great discussion among geologists (Heaman et al, 2004), and unfortunately the genesis of the Green Mountain Kimberlite remains murky. In general, the kimberlitic magma that produced the Green Mountain Kimberlite must have formed due to the interaction of mantle peridotite with volatiles, particularly CO2 and water. This volatile interaction is further supported by the abundance of calcite phenocrysts and in the ground mass of the kimberlite, as well as the Nb and REE-rich Perovskite found within the kimberlite by Boctor and Meyer (1979). Probably prior to the partial melting, the peridotite had undergone at least one episode of metasomatism. The source of the volatiles for this metasomatism and melting is unclear; there is little evidence for a mantle plume in the area, and the existence of a nearby subduction zone is likewise unclear (Heaman et al, 2003). After the formation, the magma was forced upward under high pressure, most likely following deep crustal fissures or zones of weakness related to the break up of the Rodinia supercontinent. This rapid, pressurized intrusion (and ultimately extrusion) of the kimberlitic magma explains the existence of granodioritic xenoliths within the kimberlite, taken from the surrounding Boulder Creek Batholith during the kimberlite’s intrusion. With even the age of the Green Mountain kimberlite still a matter for debate, little more can be said about the rock’s formation with any degree of certainty.

References
Boctor, N. Z., Meyer H. O. A. Oxide and sulfide minerals in kimberlite from Green Mountain, Colorado. In: The mantle sample – inclusions in kimberlites and other volcanics (F. R. Boyd and H. O. A. Meyer, editors), Proceedings of the Second International Kimberlite Conference, AGU, Washington DC, v. 1 (1979), pages 217-229.

Heaman, L. M., Bruce A. Kjarsgaard, Robert A. Creaser, The temporal evolution of North American kimberlites, Lithos, Volume 76, Issues 1-4, Selected Papers from the Eighth International Kimberlite Conference. Volume 1: The C. Roger Clement Volume, September 2004, Pages 377-397, ISSN 0024-4937, DOI: 10.1016/j.lithos.2004.03.047.

Heaman, L. M., B. A. Kjarsgaard, R. A. Creaser, The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos, Volume 71, Issues 2-4, A Tale of Two Cratons: The Slave-Kaapvaal Workshop, December 2003, Pages 153-184, ISSN 0024-4937, DOI: 10.1016/j.lithos.2003.07.005.

Larson, E. E., M. H. Amini. Fission-track dating of the Green Mountain Kimberlite diatreme, near Boulder, Colorado. The Mountain Geologist, v. 18 (1981), pages 19-22.

Lester, A. P., E. E. Larson, G. L. Farmer, C. R. Stern, and J. A. Funk. Neoproterozoic kimberlite emplacement in the Front Range, Colorado. Rocky Mountain Geology, v. 36, no. 1 (2001), pages 1-12.

McCandless, T.E. Kimberlites: mantle expressions of deep-seated subduction. In: J.J. Gurney, J.L. Gurney, M.D. Pacsoe and S.H. Richardson, Editors, Proceedings of the Seventh International Kimberlite Conference vol. 2 (1999), pp. 545–549.

Categories
backyard geology igneous stuff pictures

Finally, pictures!

I finally got off my butt and uploaded the photos from my two field trips. I was intending to get a flickr account, but didn’t feel like resurrecting my old Yahoo e-mail address. So let’s try Picasa and see how it works!

Field trip 1
Field trip 2

These are all the photos I took of the field trips. I’ve put captions on most of them, so hopefully they’ll be clear. And all of this stuff is less than a day’s drive from Denver!I do have all the photos from the Moab field trips I did a year ago, so I’ll try to get those together soon.

Categories
backyard geology igneous stuff pet rock

Backyard Geology: The Green Mountain Kimberlite

Unfortunately, I can’t provide very good directions to this one, and there’s a good reason for it. We drove up to Green Mountain (near Boulder, Colorado), got on one of the trails, and then at a random time just sort of bombed off into the underbrush. It involved going down and back up an extremely steep stream valley where there wasn’t even the hint of a track. Steep, like I’m clinging to trees to keep myself from tumbling down the slope steep. It was a very, very, very rough hike for someone with bad knees and an often embarrassing lack of balance. It’s only about a mile and a half, but it feels much, much longer.

About the best I can do right now is give you the lat/lon of the outcrop: 39º59.431’N, 105º18.09’W. These coordinates should have about a 20 foot accuracy if you believe the claims of the GPS unit’s manufacturers.

That said, the hike is very, very worth it. Big important note, though: the kimberlite is in park land. I honestly have no idea what trouble if any there could have been for us going off trail the way we did, but I know for certain that you’re not supposed to bring in a rock hammer and whack samples off the outcrop.

The kimberlite itself is very interesting. It intrudes through the Boulder Creek granodiorite, which is a holocrystalline intrusive rock with large crystals of quartz, feldspar, and mafic minerals. If you run across Boulder Creek outcrops, they have a distinctive “salt and pepper” appearance. In comparison, the kimberlite is a porphyritic extrusive rock where the ground mass is extremely dark. The samples we found contained large garnets, ilminites, and olivines. The weathered surface of the kimberlite is gray rather than black, with the chemically altered phenocrysts much more obvious by color difference.

The outcrop is mid to upper slope and stands out fairly well from the landscape. There are no trees growing in it. The outcrop itself is about 100 feet in diameter, though on the down slope it elongates into a teardrop-like shape due to the erosion of the slope.

So, a tough hike, but very cool rocks.

Kimberlite is actually one of my favorite igneous rocks, mostly because it’s very cool to look at in thin section. Much of the fine-grained ground mass in kimberlite isn’t actually silicate minerals – it’s calcite. This makes it incredibly colorful when looked at with crossed polars.

The story behind kimberlites is also very cool. They are effectively volcanic dikes, but rather unusual ones. Kimberlitic magma is produced when there’s a critical mass of volatiles in an area of the mantle, normally carbon dioxide and water. (The large amount of carbon dioxide present is the reason kimberlites contain so much calcite.) The volatiles lower the melting point of the surrounding mantle material, and with the sudden pressure on a body of volatile-filled magma, the results are explosive. The magma exits the mantle upward and comes exploding out of the crust, in some cases at the speed of sound. This incredibly explosive, violent eruption of magma under high pressure is what gives kimberlites their characteristic carrot or funnel-like shape.

Also, since the eruption of a kimberlite is so violent, they often carry significant chunks of everything they went through to get to the surface. This includes pieces of mantle peridotite – most of what we know about the mantle composition came from samples brought up in kimberlites. In certain areas, this also means that the kimberlite brings up pieces of old continental crust – most importantly, pieces of the remaining cratons from the Archean. And these craton bits are where diamonds come from. Kimberlites can be small (like the one on Green Mountain) or enormous, like the ones that are mined for diamonds in Africa.

And the best part? Technically speaking, we could get another one erupting out of the ground at any time. There’s no way of knowing. There’s just something cool about that thought, though I wouldn’t want to be standing on top of one when it made its appearance.

Categories
backyard geology igneous stuff

Astronomy Picture of the Day with Devil’s Tower!

Astronomy picture of the day for July 29.

Very, very beautiful. I love Devil’s Tower as a geological formation. I’ve only been there once, when I was just a kid, but I desperately want to go back some day soon. Beautiful picture!

For a full look at the geological history of the Devil’s Tower area, the National Parks Service has a very good description. It covers all the major sedimentary units in the area, as well as talking about the igneous rock that forms Devil’s tower.

Actually, reading over the site was a bit of a learning experience for me. I’d only ever heard Devil’s Tower referred to as a volcanic plug, but there is apparently not a lot of evidence to support ancient volcanic activity from that area. (Though since this evidence could have long since eroded away, that’s not really definitive.) Devil’s Tower certainly has a shape that makes people think “Volcano!” but the rather sheer sides of it have more to do with the columnar jointing that the igneous rock experiences. This means that the sections of rock tend to break into six (or more, or less) sided columns and then fall away when stressed by the contraction experienced during cooling.

Also, for some reason I kept thinking that Devil’s Tower was basalt. Part of this is because columnar jointing is very common in basalt. (The basalt of the Columbia Plateau springs instantly to mind.) But whether Devil’s Tower was formed by an igneous intrusion (making it a laccolith or maybe a stock) or actually is a volcanic plug, basalt would be the wrong, wrong answer.

Basalt is the name for extrusive (read: a volcano barfed it on to the surface of the Earth) igneous rock that is very rich in iron and magnesium. Gabbro is the name for rock of a similar composition that’s cooled under the surface of the Earth – or as the case may be, inside a volcano without ever making it to the surface.

Actually, the rock that form’s Devil’s Tower isn’t even gabbro – it’s technically “phonolite porphyry.” If you’ve never heard of that, it’s okay, I haven’t either. We’re getting in to very persnickity naming of igneous rocks, and unless you’re a geologist who specializes in that kind of rock, it’s not something you’d run across. Basically, it’s an intermediate intrusive rock, which is a bit like granite but lacks the quarts crystals. So I’d guess it’s closer to a diorite. Since it’s in the middle of a continental plate, it’s got too much silica to be mafic like a gabbro, but there was still enough hot mantle material in the mix to keep it from bumping over into the category of granite.

Either way, beautiful, beautiful picture!